Consider $C$, an $[n,k,d]$-linear code. Every projective codeword of minimum weight $d$ corresponds to a point in $\mathbb P^{k-1}$, and there are b connections between the algebraic and geometric properties of these points and the parameters of $C$, especially with the minimum distance $d$. The most non-trivial connection is the fact that the Castelnuovo-Mumford regularity of the coordinate ring of these points is a lower bound for $d$. Conversely, given a finite set of points $X$ in $\mathbb P^{k-1}$, it is possible to construct linear codes with projective codewords of minimum weight corresponding to $X$. We will discuss about these constructions, and we will also look at the particular case when the constructed linear code has minimum distance equal to the regularity.
Tags
Planned maintenance 13 January 2026, 08:00–12:00 CET
We are upgrading Switch Cast to improve performance, security, and reliability.
During this time, Switch Cast will be temporarily unavailable.
Real-time status updates Switch Cast:
Switch Cast status page
.